Bistatic Forward-Looking Synthetic Aperture Radar Imaging Based on the Modified Loffeld’s Bistatic Formula
نویسندگان
چکیده
Bistatic forward-looking SAR (BFSAR) has many potential applications, such as selflanding in bad weather and military detection. Therefore, BFSAR receives considerable attention recently. The imaging algorithms for BFSAR are the difficulties of the study. The original Loffeld’s Bistatic Formula (LBF) can handle most general bistatic SAR configurations well. But in some complex bistatic geometries, such as high squint or forward-looking cases, the performance of LBF is degenerated. Some extended LBF (ELBF) methods have been developed, which improve the performance of LBF in some special geometries, but still not the forward-looking configuration. In this paper, we modify the LBF method and try to solve the instantaneous azimuth frequencies of transmitter and receiver directly. Then, we can obtain a bistatic point target reference spectrum (BPTRS), which is accurate enough for forward-looking configuration. A range Doppler algorithm (RDA) based on this BPTRS is derived. Finally, simulations validate the accuracy of the modified Loffeld’s Bistatic Formula (MLBF) and effectiveness of imaging algorithm.
منابع مشابه
Focusing bistatic forward-looking synthetic aperture radar based on modified Loffeld’s bistatic formula and chirp scaling algorithm
A focusing solution for bistatic forward-looking synthetic aperture radar (BFSAR) is presented. Forward-looking imaging is highly desirable in some potential applications, such as self-landing in bad weather, military surveillance, and navigation. Unfortunately, monostatic synthetic aperture radar reaches its limit when it is used in a forward-looking configuration. BFSAR can provide a high-res...
متن کاملRange Doppler Algorithm for Bistatic Sar Processing Based on the Improved Loffeld’s Bistatic Formula
This paper presents a new range Doppler algorithm (RDA) for bistatic synthetic aperture radar (SAR) processing in a general configuration based on a bistatic point target reference spectrum: the improved extended Loffeld’s bistatic formula (ILBF). The ILBF spectrum is proved to be comparably accurate with the spectrum derived using the method of series reversion (MSR). Based on the expansion of...
متن کاملFocusing Translational Variant Bistatic Forward-Looking SAR Data Based on Two-Dimensional Non-Uniform FFT
Forward-looking imaging has extensive potential applications, such as self-navigation and self-landing. By choosing proper geometry, bistatic synthetic aperture radar (BiSAR) can break through the limitations of monostatic SAR on forward-looking imaging and provide possibility of the forwardlooking imaging. In this special bistatic configuration, two problems involving large range cell migratio...
متن کاملImage Formation Using Fast Factorized Backprojection Based on Sub-Aperture and Sub-Image for General Bistatic Forward-Looking SAR with Arbitrary Motion
In this paper, a fast time domain imaging algorithm called bistatic forward-looking fast factorized backprojection algorithm (BF-FFBPA) based on sub-aperture and sub-image is proposed for general bistatic forward-looking synthetic aperture radar (BFSAR) with arbitrary motion. It can not only accurately dispose the large spatial variant range cell migrations and complicated motion errors, but al...
متن کاملAn Extended Wavenumber-Domain Algorithm Combined with Two-Step Motion Compensation for Bistatic Forward-Looking SAR
With appropriate geometry configurations, bistatic Synthetic Aperture Radar (SAR) can break through the limitations of monostatic SAR on forward-looking imaging. Thanks to such a capability, bistatic forward-looking SAR (BFSAR) has extensive potential applications. For the focusing problem of BFSAR, wavenumber-domain algorithm is accepted as the ideal solution. However, in practical application...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014